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Abstract
By interpolating between Fisher information and mechanical kinetic energy,
we introduce a general notion of kinetic energy with respect to a parameter
of Schrödinger wavefunctions from a statistical inference perspective. Kinetic
energy is the sum of Fisher information and an integral of a parametrized
analogue of quantum mechanical current density related to phase. A family of
integral inequalities concerning kinetic energy and moments are established,
among which the Cramér–Rao inequality and the Weyl–Heisenberg inequality,
are special cases. In particular, the integral inequalities involving the negative
order moments are relevant to the study of electron systems. Moreover,
by specifying the parameter to a scale, we obtain a family of inequalities
of uncertainty relation type which incorporate the position and momentum
observables symmetrically in a single quantity.

PACS numbers: 02.50.Ph, 03.67.−a

1. Introduction

The notion of Fisher information arose from statistical inference [4, 6] and is now playing an
increasingly popular role in the interactions among statistics, information theory, differential
geometry and physics [1, 2, 9, 12]. Its main virtue comes from its formal resemblance
to mechanical kinetic energy [8, 9], from the celebrated Cramér–Rao inequality and the
asymptotical normality of maximum likelihood estimations [4]. Its various extensions to the
non-commutative case play an important role in quantum estimation and quantum detection
[12, 17]. Its usefulness in deriving the Heisenberg uncertainty relations was first noted by
Stam [16]. Moreover, by virtue of Fisher information, the Heisenberg uncertainty relation
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concerning the canonical pair of position and momentum observables can even be formulated
as an exact information conservation law [13], rather than as an inequality concerning variances
[11, 14].

On the other hand, the mechanical kinetic energy is a basic notion in kinematical and
dynamical theory of motions, and plays a crucial role in the Lagrangian approach to mechanics.
The formal resemblance between the mathematical expressions of Fisher information and
mechanical kinetic energy (both involve a square gradient integration) suggests that there may
be some intimate and intrinsic connections between the statistical notion of Fisher information
and the mechanical notion of kinetic energy, and thus renders the powerful and intuitive
statistical inference method applicable in an informational approach to mechanics. In fact,
Frieden proposed a principle of extreme physical information, in particular, the principle of
minimum Fisher information, as a unified theme to derive physical motion equations [7–9].
His programme is fruitful and promising. In this paper, working in the spirit of Frieden in
emphasizing the informational interpretation of mechanical kinetic energy, we first introduce
a notion of kinetic energy with respect to a parameter as an informational concept, which
incorporates both the notions of Fisher information and the conventional mechanical kinetic
energy. Then we establish a family of integral inequalities involving the kinetic energy,
which are of the type of uncertainty relations and include the Cramér–Rao inequality [4]
and the Weyl–Heisenberg inequality [11, 14] as particular cases. We will only work in one
spatial dimension for simplicity since our focus is to introduce a new notion and to clarify
its relationship with mechanical kinetic energy and Fisher information. In the three spatial
dimensional case, the inequalities involving negative order moments are useful in the study
of the hydrogen atom. For example, Faris used an uncertainty relation inequality involving
the radial expectation of the first negative order to establish an estimation of the ground
state energy [5]. The other order moments are also of analytical relevance and have physical
meaning in quantum chemistry [15], and the general uncertainty relation inequalities involving
them are useful in establishing various moment bounds for the Weizsäcker energy of many
electron systems.

2. Fisher information and kinetic energy

First, we recall the mathematical definition of Fisher information. Let {pθ : θ ∈ R} be a
family of probability densities (or more generally, likelihood functions) parametrized by a
parameter θ . The Fisher information of pθ (with respect to the parameter θ ) is defined as
(see [4])

I (pθ ) :=
∫

R

(
∂ lnpθ (x)

∂θ

)2

pθ (x) dx = 4
∫

R

(
∂
√
pθ (x)

∂θ

)2

dx

provided the integral is finite. Otherwise it is defined as infinite. Fisher information
characterizes the information contents of probability densities and is also intimately related
to the Shannon entropy via the elegant de Bruijin identity [3, 16]. More precisely, let pθ be
the convolution probability density of any probability density p with the normal (Gaussian)
density with zero mean and variance θ > 0 and let S(pθ ) := − ∫

R
pθ (x)lnpθ(x) dx be the

Shannon entropy of pθ . Then

∂

∂θ
S(pθ ) = 1

2
I (pθ ).

However, in quantum mechanics, probability amplitudes, not probability densities, are
fundamental quantities. Inspired by the above notion and for comparison with the notion of
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kinetic energy with respect to a parameter to be introduced shortly, we start from probability
amplitudes (wavefunctions) and define their Fisher information as follows.

Let {ψθ : θ ∈ R} ⊂ L2(R, dx) be a family of Schrödinger wavefunctions sufficiently
well behaved with respect to the parameter θ . The parameter θ may be interpreted as temporal
or spatial shift, or other physical parameter. According to the statistical interpretation of
wavefunctions proposed by Born, pθ := |ψθ |2 describes the distribution probability density of
the particle ifψθ is normalized. In general, whenψθ is not necessarily normalized,pθ := |ψθ |2
may be interpreted as a likelihood function. The wavefunction ψθ is a probability amplitude
corresponding to pθ (for any real φ, eiφψθ is also a probability amplitude corresponding to
pθ ). The Fisher information of {ψθ : θ ∈ R} with respect to the parameter θ is defined as

I (ψθ ) :=
∫

R

(
∂ ln|ψθ(x)|2

∂θ

)2

|ψθ(x)|2 dx = 4
∫

R

(
∂|ψθ(x)|
∂θ

)2

dx

provided the integral is finite. Otherwise it is defined as infinite. This is essentially the
Fisher information of the family of likelihood functions pθ = |ψθ |2. In particular, if
ψθ(x) := ψ(x + θ) for some ψ ∈ L2(R, dx), then

I (ψθ ) = 4
∫

R

(
∂|ψ(x + θ)|

∂θ

)2

dx = 4
∫

R

(
∂|ψ(x)|
∂x

)2

dx

is independent of the parameter θ . We denote I (ψθ ) simply by I (ψ) in this particular case.
The notion of Fisher information of a wavefunction has one defect since the phase of

ψθ does not play any role in this definition and the important phase information which is so
fundamental in the quantum mechanical superposition principle is missing. To remedy this
weak point and to take the phase into account, we define the kinetic energy of the wavefunction
ψθ with respect to the parameter θ as

K(ψθ) :=
∫

R

∣∣∣∣∂ψθ (x)∂θ

∣∣∣∣
2

dx.

This definition should be useful in treating quantum mechanical quantities from the statistical
inference point of view. In particular, if ψθ satisfies a Schrödinger type equation with respect
to the parameter θ : i ∂

∂θ
ψθ = Hψθ , then K(ψθ) = 〈H 2〉ψθ coincides with the expectation

value of the square of the Hamiltonian H at the state ψθ .
To see how the above definition generalizes the notion of conventional mechanical kinetic

energy, consider ψθ(x) := ψ(x + θ) for some ψ ∈ L2(R, dx), that is, θ is a location
parameter. Due to the translation invariance of the Lebesgue integral, we have

K(ψθ) =
∫

R

∣∣∣∣∂ψ(x + θ)

∂θ

∣∣∣∣
2

dx =
∫

R

∣∣∣∣∂ψ(x)∂x

∣∣∣∣
2

dx.

Thus in this particular case, K(ψθ) is independent of the parameter θ and is just the
conventional mechanical kinetic energy of ψ . In other words, the conventional mechanical
kinetic energy may be viewed as our kinetic energy with respect to the location parameter. In
this circumstance, we denote K(ψθ) simply by K(ψ).

In general, ψθ is a complex wavefunction, but in the particular case when ψθ is a real
positive wavefunction, it is clear from the definitions that I (ψθ ) = 4K(ψθ). In this case,
Fisher information and kinetic energy are essentially the same quantity. In general, Fisher
information and kinetic energy are related by the following identity taking into account the
contribution of the phase part.
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Theorem 1. For any ψθ ∈ L2(R, dx), it holds that

K(ψθ) = 1

4
I (ψθ ) +

∫
R

J 2
ψθ
(x)|ψθ(x)|2 dx.

Here

Jψθ = 1

2i|ψθ |2
(
∂ψθ

∂θ
ψ∗
θ − ψθ

∂ψ∗
θ

∂θ

)

is an analogue of the normalized quantum mechanical current density (with respect to the
parameter θ ).

Proof. Let ψθ(x) = rθ (x)eiφθ (x) be the polar decomposition of the wavefunction ψθ . Then
both rθ (x) (the amplitude) and φθ(x) (the phase) are real-valued functions, and

|ψθ(x)|2 = r2
θ (x)

∂ψθ

∂θ
= ∂rθ

∂θ
eiφθ + irθ eiφθ

∂φθ

∂θ
.

Consequently,

K(ψθ) =
∫

R

∣∣∣∣∂rθ (x)∂θ
eiφθ (x) + irθ (x) eiφθ(x)

∂φθ

∂θ

∣∣∣∣
2

dx

=
∫

R

(
∂rθ (x)

∂θ

)2

dx +
∫

R

(
rθ (x)

∂φθ(x)

∂θ

)2

dx

= 1

4
I (ψθ ) +

∫
R

J 2
ψθ
(x)|ψθ(x)|2 dx.

�

3. Uncertainty relation inequalities

It was first noted by Stam that the conventional Heisenberg uncertainty relation is a
consequence of the Cramér–Rao inequality [16]. We will establish a family of integral
inequalities relating kinetic energy and moments (with both positive and negative order)
which are of the characteristic of uncertainty relations.

For k = 0, ±1,±2, . . . , we define the kth moment of ψθ centred at zero as

Mk(ψθ ) :=
∫

R

xk|ψθ(x)|2 dx

provided the integral exists.
Let

Qkψθ(x) = xkψθ Pψθ (x) = ∂

∂θ
ψθ (x).

Then

〈Qkψθ , Pψθ 〉 =
∫

R

xkψθ (x)
∂

∂θ
ψ∗
θ (x) dx.

Consequently, let Re denote the real part of a complex number, we have

Re〈Qkψθ , Pψθ 〉 = 1

2

∫
R

xk
(
ψθ(x)

∂ψ∗
θ (x)

∂θ
+ ψ∗

θ (x)
∂ψθ(x)

∂θ

)
dx

= 1

2

∫
R

xk
∂

∂θ
|ψθ(x)|2 dx

= 1

2

∂

∂θ

∫
R

xk|ψθ(x)|2 dx

= 1

2

∂

∂θ
Mk(ψθ ).
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By Schwarz inequality,

|Re〈Qkψθ , Pψθ 〉|2 � 〈Qkψθ,Qkψθ 〉 · 〈Pψθ , Pψθ 〉.
Thus(

1

2

∂

∂θ
Mk(ψθ )

)2

�
∫

R

|Qkψθ(x)|2 dx ·
∫

R

|Pψθ (x)|2 dx = M2k(ψθ) ·K(ψθ).
In summary, we have established the following result.

Theorem 2. For k = 0,±1,±2, . . . , ψθ ∈ L2(R, dx), it holds that

K(ψθ) ·M2k(ψθ ) �
(

1

2

∂

∂θ
Mk(ψθ )

)2

.

If ψθ is a positive wavefunction, that is, ψθ =
√

|ψθ |2, then I (ψθ ) = 4K(ψθ) and we
come to the following conclusion.

Corollary 3. For k = 0,±1,±2, . . . , ψθ ∈ L2(R, dx),ψθ � 0, it holds that

I (ψθ ) ·M2k(ψθ ) �
(
∂

∂θ
Mk(ψθ )

)2

.

In particular, when k = 1, we come to the celebrated Cramér–Rao inequality widely used in
statistical inference [4].

For any k = 0, ±1, ±2, . . . , ψ ∈ L2(R, dx), and any θ ∈ R, we define the kth moment
of ψ centred at θ as

Mk(ψ, θ) :=
∫

R

(x − θ)k|ψ(x)|2 dx.

Corollary 4. For k = 0, ±1, ±2, . . . , ψ ∈ L2(R, dx), θ ∈ R, we have

K(ψ) ·M2k(ψ, θ) �
(
k

2
Mk−1(ψ, θ)

)2

.

Proof. Put ψθ(x) = ψ(x + θ), and apply theorem 2. In this case, K(ψθ) = K(ψ) is
independent of θ , and

Mk(ψθ ) =
∫

R

xk|ψ(x + θ)|2 dx

=
∫

R

(x − θ)k|ψ(x)|2 dx

= Mk(ψ, θ)

∂

∂θ
Mk(ψθ ) = −k

∫
R

(x − θ)k−1|ψ(x)|2 dx

= −kMk−1(ψ, θ).

The conclusion follows.
Two cases are of particular interest and simplicity. We assume that ψθ is normalized, that

is,
∫

R
|ψθ(x)|2 dx = 1.

(1) If k = 1, then we obtain the conventional Weyl–Heisenberg inequality [11, 14]

K(ψ) ·M2(ψ) � 1

4
.
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(2) If k = −1, we have a peculiar inequality

K(ψ) · 1

M−2(ψ)
� 1

4
which may also be interpreted as a kind of uncertainty relation. �

Frieden introduced a notion of F -information for the purpose to establish a unitless
analogue of Fisher information [10]. Generalizing this notion from probability densities to
wavefunctions, we define for any ψ ∈ L2(R, dx), the F -information of ψ as

F(ψ) := 4
∫

R

x2

∣∣∣∣∂ψ(x)∂x

∣∣∣∣
2

dx.

This notion of F-information is essentially connected with the Fisher information of
ψθ(x) := ψ(θx), that is, Fisher information with respect to a scale parameter, and thus
is also intimately connected with the kinetic energy with respect to a scale parameter. In
theorem 2, specifying the parameter to a scale parameter, we have

Corollary 5. For k = 0, ± 1, ±2, . . . , ψ ∈ L2(R, dx), θ ∈ R, we have

F(ψ) � (k + 1)2M2
k (ψ)

M2k(ψ)
.

In particular, when ψ is a normalized wavefunction and k = 0, we have

F(ψ) � 1.

Proof. In theorem 2, let ψθ(x) := ψ(θx), then by definitions

K(ψθ) =
∫

R

∣∣∣∣∂ψ(θx)∂θ

∣∣∣∣
2

dx = 1

θ3

∫
R

x2

∣∣∣∣∂ψ(x)∂x

∣∣∣∣
2

dx = 1

4θ3
F(ψ)

Mk(ψθ ) =
∫

R

xk|ψ(θx)|2 dx = 1

θk+1
Mk(ψ)

M2k(ψθ ) = 1

θ2k+1
M2k(ψ). �

The desired result follows.

4. Discussions

By generalizing both the notion of Fisher information and the notion of conventional
mechanical kinetic energy, we have introduced a general notion of kinetic energy with respect
to a parameter. Since this notion interpolates between a fundamental statistical notion—the
Fisher information, and a fundamental mechanical notion—the kinetic energy, it provides a
bridge to connect the statistical information theory and the theory of mechanical motions. As
applications, we have established a whole family of integral inequalities of the characteristic
of uncertainty relations, which includes some familiar fundamental inequalities as special
cases. We hope the notion of kinetic energy introduced here may serve as an intuitive tool in
the informational approach to physics by connecting the notion of Fisher information and the
classical Lagrangian approach to mechanics.

It should be emphasized that we have only worked on the one-dimensional case (in both
parameter and the space). Although the extension to the multi-parameter case and higher
dimensional spaces seems straightforward, we do not pursue it here. However, we remark that
this extension is more relevant in applications to physical systems. Many new phenomena



Fisher information, kinetic energy and uncertainty relation inequalities 5187

should be expected concerning the interaction of multi-parameter and higher dimensional
spaces. In this respect, see [5, 15, 17] for some motivating physical examples.
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